Thursday, February 11, 2010

Introduction to motherboards

The primary component of a computer is the motherboard (sometimes called the "mainboard"). The motherboard is the hub which is used to connect all of the computer's essential components.

Motherboard



As its name suggests, the motherboard acts as a "parent" board, which takes the form of a large printed circuit with connectors for expansion cards, memory modules, the processor, etc.

The input-output connectors

The motherboard has a certain number of input/output sockets found on the rear panel.

Connectors on the rear panel



Most motherboards have the following connectors:

  • A serial port, for connecting old peripherals;
  • A parallel port, mainly for connecting old printers;
  • USB ports (1.1, low-speed, or 2.0, high-speed), for connecting more recent peripherals;
  • RJ45 connector (called LAN or ethernet port) used for connecting the computer to a network. It corresponds to a network card integrated into the motherboard;
  • VGA connector (called SUB-D15), for connecting a monitor. This connector interfaces with the built-in graphics card;
  • Audio plugs (Line-In, Line-Out and microphone), for connecting sound speakers or a hi-fi system, as well as a microphone. This connector interfaces with the built-in sound card;

Expansion slots

Expansion slots are compartments into which expansion cards can be inserted. These are cards which give the computer new features or increased performance. There are several types of slots:

  • ISA slots (Industry Standard Architecture): For inserting ISA slots. The slowest ones are 16-bit.
  • VLB slots (Vesa Local Bus): Bus formerly used for installing graphics cards.
  • PCI slot (Peripheral Component InterConnect): used for connecting PCI cards, which are much faster than ISA cards and run on 32 bits
  • AGP slot (Accelerated Graphic Port): A fast port for a graphics card.
  • PCI Express slot (Peripheral Component InterConnect Express): Faster bus architecture than AGP and PCI buses.
  • AMR slot (Audio Modem Riser): This type of slot is used for connecting mini-cards to PCs which are built for it.

PCI card

The processor socket

The processor (also called the microprocessor) is the computer's brain. It runs programs using a set of instructions. The processor is characterised by its frequency, the rate at which it executes instructions. This means that an 800 MHz processor can carry out 800 million operations per second.

The motherboard has a slot (sometimes several, for multi-processor motherboards) into which the processor is inserted, called the processor socket or slot.

  • Slot: A rectangular connector into which the processor is mounted vertically.
  • Socket: In addition to being the general term, it also refers more specifically to a square-shaped connector with many small connectors into which the processor is directly inserted.



Within these two large families, there are different versions used, depending on the type of processor. Whatever slot or socket is used, it is essential that the processor be inserted gently, so that none of its pins are bent (it has hundreds of them). To make inserting them easier, a concept called ZIF (Zero Insertion Force) has been created. ZIF sockets have a small lever, which, when lifted, allows the processor to be inserted without applying any pressure, and when lowered, it holds the processor in place.

The processor generally includes some sort of foolproof device, in the form of a notched corner or coloured markings, which must be aligned with the corresponding markings on the socket.

Fans and radiators



Since the processor releases heat, it is necessary to dissipate it, to keep the circuits from melting. This is why it is generally mounted atop a heat sink (sometimes called a cooler or radiator), which is made of a metal which conducts heat well (copper or aluminium) in order to increase the microprocessor's heat transfer surface. The heat sink includes a base in contact with the processor and fins in order to increase the heat transfer surface. A fan generally accompanies the cooler in order to improve air circulation around it and to improve the heat transfer. The unit also includes a fan which vents hot air from the case and let fresh air come in from outside.

The CMOS clock and battery

The real time clock (or RTC for short) is a circuit which synchronises system signals. It is made from a crystal which, as it vibrates, gives off pulses (called timer ticks) in order to keep the system elements running on the same time. The timer frequency (expressed in MHz) the number of times the crystal vibrates each second, i.e. the number of timer ticks per second. The higher the frequency, the more information the system can process.

When the computer is turned off, the power supply stops providing electricity to the motherboard. When the computer is turned on again, the system is still on the right time. An electronic circuit, called the CMOS (Complementary Metal-Oxyde Semiconductor, sometimes called the BIOS CMOS), saves some system information, such as the time, the system date, and a few essential system settings.

The CMOS is kept powered by a battery (a button battery), or a battery located on the motherboard. Information on the hardware installed in the computer (such as the number of tracks or sectors on each hard drive) are stored in the CMOS. As the CMOS is a form of slow storage, certain systems sometimes recopy the CMOS's content into the RAM (fast storage); the term "memory shadow" is used to describe this process of copying the data into RAM.

The "complementary metal-oxide semiconductor" is a transistor manufacturing technology, the latest in a long line which includes the TTL ("Transistor-transistor-logic"), the TTLS (TTL Schottky) (faster), or the NMOS (negative channel) and PMOS (positive channel).

The CMOS allows many complementary channels to run on a single chip. Compared with TTL or TTLS, CMOS is much slower, but it consumes far less energy, which is why it is used in computer clocks, which run on batteries. The term CMOS is sometimes incorrectly used to refer to computer clocks.

When the system time keeps getting reset, or the clock runs late, all that is usually necessary is to change the battery.

Integrated components

The motherboard includes some on-board components, meaning that they are integrated into its printed circuitry:

  • The chipset, a circuit which controls the majority of resources (including the bus interface with the processor, cache memory and random-access memory, expansion cards, etc.)
  • The CMOS clock and battery,
  • The BIOS,
  • The system bus and the expansion bus.



What's more, recent motherboards generally include a number of onboard multimedia and networking devices which can be disabled:

  • integrated network card;
  • integrated graphics card;
  • integrated sound card;
  • upgraded hard drive controllers.

Integrated components

The motherboard includes some on-board components, meaning that they are integrated into its printed circuitry:

  • The chipset, a circuit which controls the majority of resources (including the bus interface with the processor, cache memory and random-access memory, expansion cards, etc.)
  • The CMOS clock and battery,
  • The BIOS,
  • The system bus and the expansion bus.



What's more, recent motherboards generally include a number of onboard multimedia and networking devices which can be disabled:

  • integrated network card;
  • integrated graphics card;
  • integrated sound card;
  • upgraded hard drive controllers.

Motherboard form factor

The term "form factor" is normally used to refer to the motherboard's geometry, dimensions, arrangement, and electrical requirements. In order to build motherboards which can be used in different brands of cases, a few standards have been developed:

  • AT baby/AT full format is a format used in the earliest 386 and 486 PCs. This format was replaced by the ATX format, which shape allowed for better air circulation and made it easier to access the components;
  • ATX: The ATX format is an upgrade to Baby-AT. It was intended to improve ease of use. The connection device on an ATX motherboard is designed to make plugging in peripherals as easy as possible (for example, the IDE connectors are located beside the disks.) What's more, motherboard components are arranged in parallel, so as to improve heat removal.
    • ATX standard: The ATX standard format is traditionally 305x244 mm. It includes an AGP connector and 6 PCI connectors.
    • micro-ATX: The microATX format is an upgrade to ATX, which has the same primary advantages in a smaller format (244x244 mm), with a lower cost. Micro-ATX includes an AGP connector and 3 PCI connectors.
    • Flex-ATX: FlexATX is an expansion of microATX which offers manufacturers greater flexibility when designing their computers. It includes an AGP connector and 2 PCI connectors.
    • mini-ATX: miniATX is a compact alternative to the format microATX (284x208 mm), and includes an AGP connector and 4 PCI connectors instead of 3 that come with microATX. It is mainly intended for mini-PCs (barebone computers).
  • BTX: The BTX format (Balanced Technology eXtended), supported by Intel, is a format designed to improve upon the arrangement of components, so as to optimise air circulation, acoustics, and heat dissipation. The various connectors (memory slots, expansion slots) are aligned in parallel, in the direction in which air circulates. Additionally, the microprocessor is located in the front end of the case, by the air intake, where the air is freshest. The BTX power cord is the same as with ATX power supplies. The BTX standard defines three formats:
    • BTX standard, with standard dimensions of 325x267 mm;
    • micro-BTX, with small dimensions (264x267 mm);
    • pico-BTX, with much smaller dimensions (203x267 mm).
  • ITX: The ITX format (Information Technology eXtended), supported by Via, is an extremely compact format designed for miniature configurations such as mini-PC. There are two major ITX formats:
    • mini-ITX, with small dimensions (170x170 mm) and a PCI slot;
    • nano-ITX, with extremely small dimensions (120x120 mm) and a miniPCI slot. For this reason, the choice of the motherboard (and its form factor) depends on which case is chosen. The table below summarises the characteristics of the various form factors.

motherboard nowdays

The main circuit board of a microcomputer. The motherboard contains the connectors for attaching additional boards. Typically, the motherboard contains the CPU, BIOS, memory, mass storage interfaces, serial and parallel ports, expansion slots, and all the controllers required to control standard peripheral devices, such as the display screen, keyboard, and disk drive. Collectively, all these chips that reside on the motherboard are known as the motherboard's chipset.

On most PCs, it is possible to add memory chips directly to the motherboard. You may also be able to upgrade to a faster PC by replacing the CPU chip. To add additional core features, you may need to replace the motherboard entirely.

Description

  • The best way to describe the motherboard goes along well with my human body analogy that I used for the CPU. The CPU is the brain, and the motherboard is the nervous system. Therefore, just as a person would want to have fast communication to the body parts, you want fast communication between the parts of your computer. Fast communication isn't as important as reliable communication though. If your brain wanted to move your arm, you want to be sure the nervous system can accurately and consistently carry the signals to do that! Thus, in my opinion, the motherboard is the second most important part of the computer.
  • The motherboard is the circuit board to which all the other components of the computer connect in some way. The video card, sound card, IDE hard drive, etc. all plug into the motherboard's various slots and connectors. The CPU also plugs into the motherboard via a Socket or a Slot.

GIGABYTE First With USB 3.0 Motherboard Certification

Taipei, Taiwan, January 4, 2010 - GIGABYTE TECHNOLOGY Co., Ltd, a leading manufacturer of motherboards, graphics cards and other computing hardware solutions today proudly announced that the GA-P55A-UD3 motherboard is the world’s first motherboard to pass USB-IF (Universal Serial Bus-Implementers Forum) certification. As the first motherboard to receive such certification, the GIGABYTE GA-P55A-UD3 is qualified to display the SuperSpeed USB logo, assuring customers their motherboard provides all the speed and power efficiency enhancements that SuperSpeed USB offers, including up to 10x data transfer speed boost over USB 2.0 as well as compatibility with existing USB 2.0 products.

In order to receive certification, the GIGABYTE GA-P55A-UD3 underwent strict compliance and product quality testing from the USB-IF. Other GIGABYTE motherboard models with onboard USB 3.0 are currently being tested and are expected to pass certification within the next couple of weeks.

Motherboard & Memory Sockets Details

Most motherboards today come with between 2 and 8 sockets for the insertion of memory. These are usually either SIMMs (Single Inline Memory Modules) or DIMMs (Dual Inline Memory Modules). These sockets .can be of different sizes. The motherboard usually labels these sockets "SIMMO" th'rough"SIMM7" or "DIMMl" through "DIMM3", etc. The sockets are almost always filled starting with the lowest numbered socket first. Most Pentium class or higher motherboards require SIMMs to be inserted in pairs, but DIMMs may be inserted individually.

Name:  Motherboards Memory Sockets Details.jpg  Views: 759  Size:  40.6 KB

Sunday, January 3, 2010

Temperature and reliability

Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the Northbridge, in modern motherboards. If the motherboard is not cooled properly, it can cause the computer to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPUs until the late 1990s; since then, most have required CPU fans mounted on their heat sinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS or operating system can use to regulate fan speed. Some higher-powered computers (which typically have high-performance microprocessors, large amounts of RAM, and high-performance video cards) use a water-cooling system instead of many fans.

Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.

A 2003 study[7] found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation.[8]
For more information on premature capacitor failure on PC motherboards, see capacitor plague.

Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C,[9] their expected design life roughly doubles for every 10 °C below this. At 45 °C a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard. However, many manufacturers have delivered substandard capacitors,[citation needed] which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but tedious and time-consuming, to find and replace failed capacitors on PC motherboards; it is less expensive to buy a new motherboard than to pay for such a repair.

Bootstrapping using the BIOS

Motherboards contain some non-volatile memory to initialize the system and load an operating system from some external peripheral device. Microcomputers such as the Apple II and IBM PC used ROM chips, mounted in sockets on the motherboard. At power-up, the central processor would load its program counter with the address of the boot ROM and start executing ROM instructions, displaying system information on the screen and running memory checks, which would in turn start loading memory from an external or peripheral device (disk drive). If none is available, then the computer can perform tasks from other memory stores or display an error message, depending on the model and design of the computer and version of the BIOS.

Most modern motherboard designs use a BIOS, stored in an EEPROM chip soldered to the motherboard, to bootstrap the motherboard. (Socketed BIOS chips are widely used, also.) By booting the motherboard, the memory, circuitry, and peripherals are tested and configured. This process is known as a computer Power-On Self Test (POST) and may include testing some of the following devices:
floppy drive
network controller
CD-ROM drive
DVD-ROM drive
SCSI hard drive
IDE, EIDE, or SATA hard disk
External USB memory storage device

Any of the above devices can be stored with machine code instructions to load an operating system or program

Form factor

Motherboards are produced in a variety of sizes and shapes called computer form factor, some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible commodity computers have been standardized to fit various case sizes. As of 2007, most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers, which have not traditionally been built from commodity components. The current desktop PC form factor of choice is ATX. A case's, motherboard's and PSU's form factor must all match, though some smaller form factor motherboards of the same family will fit larger cases. For example, an ATX case will usually accommodate a microATX motherboard.

Laptop computers generally use highly integrated, miniaturized and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.

Peripheral card slots

A typical motherboard of 2009 will have a different number of connections depending on its standard.

A standard ATX motherboard will typically have 1x PCI-E 16x connection for a graphics card, 2x PCI slots for various expansion cards, and 1x PCI-E 1x (which will eventually supersede PCI). A standard EATX motherboard will have 1x PCI-E 16x connection for a graphics card, and a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot. (This varies between brands and models.)

Some motherboards have 2x PCI-E 16x slots, to allow more than 2 monitors without special hardware, or use a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together, to allow better performance in intensive graphical computing tasks, such as gaming and video editing.

As of 2007, virtually all motherboards come with at least 4x USB ports on the rear, with at least 2 connections on the board internally for wiring additional front ports that are built into the computer's case. Ethernet is also included now. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard, to allow sound output without the need for any extra components. This allows computers to be far more multimedia-based than before. Cheaper machines now often have their graphics chip built into the motherboard rather than a separate card.

Integrated peripherals

With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly-integrated motherboards are thus especially popular in small form factor and budget computers.

For example, the ECS RS485M-M,[6] a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:

  • disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
  • integrated ATI Radeon graphics controller supporting 2D and 3D graphics, with VGA and TV output
  • integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
  • Fast Ethernet network controller for 10/100 Mbit networking
  • USB 2.0 controller supporting up to 12 USB ports
  • IrDA controller for infrared data communication (e.g. with an IrDA-enabled cellular phone or printer)
  • temperature, voltage, and fan-speed sensors that allow software to monitor the health of computer components

Expansion cards to support all of these functions would have cost hundreds of dollars even a decade ago; however, as of April 2007 such highly-integrated motherboards are available for as little as $30 in the USA.

CPU Socket

A CPU socket or slot is an electrical component that attaches to a printed circuit board (PCB) and is designed to house a CPU (also called a microprocessor). It is a special type of integrated circuit socket designed for very high pin counts. A CPU socket provides many functions, including a physical structure to support the CPU, support for a heat sink, facilitating replacement (as well as reducing cost), and most importantly, forming an electrical interface both with the CPU and the PCB. CPU sockets can most often be found in most desktop and server computers (laptops typically use surface mount CPUs), particularly those based on the Intel x86 architecture on the motherboard. A CPU socket type and motherboard chipset must support the CPU series and speed. Generally, with a newer AMD microprocessor, you need only select a motherboard that supports the CPU and not be concerned with the chipset.

Overview

Most computer motherboards produced today are designed for IBM-compatible computers, which currently account for around 90% of global PC sale. A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also hosts the central processing unit, other subsystems, and devices.

Motherboards are also used in many other electronics devices such as mobile phones, stop-watches, clocks, and other small electronic devices.

A typical desktop computer has its microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.

An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.

Modern motherboards include, at a minimum:

  • sockets (or slots) in which one or more microprocessors are installed[3]
  • slots into which the system's main memory is installed (typically in the form of DIMM modules containing DRAM chips)
  • a chipset which forms an interface between the CPU's front-side bus, main memory, and peripheral buses
  • non-volatile memory chips (usually Flash ROM in modern motherboards) containing the system's firmware or BIOS
  • a clock generator which produces the system clock signal to synchronize the various components
  • slots for expansion cards (these interface to the system via the buses supported by the chipset)
  • power connectors, which receive electrical power from the computer power supply and distribute it to the CPU, chipset, main memory, and expansion cards.[4]

Additionally, nearly all motherboards include logic and connectors to support commonly-used input devices, such as PS/2 connectors for a mouse and keyboard. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example, on the Apple II and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.

Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heat sinks and mounting points for fans to dissipate excess heat.

History

Prior to the advent of the microprocessor, a computer was usually built in a card-cage case or mainframe with components connected by a backplane consisting of a set of slots themselves connected with wires; in very old designs the wires were discrete connections between card connector pins, but printed circuit boards soon became the standard practice. The Central Processing Unit, memory and peripherals were housed on individual printed circuit boards which plugged into the backplane.

During the late 1980s and 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard (see below). In the late 1980s, motherboards began to include single ICs (called Super I/O chips) capable of supporting a set of low-speed peripherals: keyboard, mouse, floppy disk drive, serial ports, and parallel ports. As of the late 1990s, many personal computer motherboards supported a full range of audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retained only the graphics card as a separate component.

The early pioneers of motherboard manufacturing were Micronics, Mylex, AMI, DTK, Hauppauge, Orchid Technology, Elitegroup, DFI, and a number of Taiwan-based manufacturers.

Popular personal computers such as the Apple II and IBM PC had published schematic diagrams and other documentation which permitted rapid reverse-engineering and third-party replacement motherboards. Usually intended for building new computers compatible with the exemplars, many motherboards offered additional performance or other features and were used to upgrade the manufacturer's original equipment.

The term mainboard is archaically applied to devices with a single board and no additional expansions or capability. In modern terms this would include embedded systems and controlling boards in televisions, washing machines, etc. A motherboard specifically refers to a printed circuit with the capability to add/extend its performance.

MotherBoard


A motherboard is the central printed circuit board (PCB) in many modern computers and holds many of the crucial components of the system, while providing connectors for other peripherals. The motherboard is sometimes alternatively known as the main board, system board, or, on Apple computers, the logic board. It is also sometimes casually shortened to mobo..

Advertisment 1